REPORT A PROBLEMicon

Fields marked with an asterisk are required
*
*
*
*
captcha
I hereby confirm that I have read and accept regulations and privacy policies *

LINKS

Resource link (portal)

Resource link (short)

http://zasobynauki.pl/zasoby/49846

Resource link (repository)

https://id.e-science.pl/records/49846

Resource type: article, chapter

NRFixer: sentiment based model for predictingthe fixability of non-reproducible bugs

View

Resource metadata

Title NRFixer: sentiment based model for predictingthe fixability of non-reproducible bugs
Persons Authors: Anjali Goyal, Neetu Sardana
Partner: Wrocław University of Science and Technology
Description Software maintenance is an essential step in software development life cycle. Nowadays, softwarecompanies spend approximately 45% of total cost in maintenance activities. Large software projects maintain bug repositories to collect, organize and resolve bug reports. Sometimes it is difficult to reproduce the reported bug with the information present in a bug report and thus this bug is marked with resolution non-reproducible (NR). When NR bugs are reconsidered, a few of them might get fixed (NR-to-fix) leaving the others with the same resolution (NR). To analyse the behaviour of developers towards NR-to-fix and NR bugs, the sentiment analysis of NR bug report textual contents has been conducted. The sentiment analysis of bug reports shows that NR bugs’sentiments incline towards more negativity than reproducible bugs. Also, there is a noticeable opinion drift found in the sentiments of NR-to-fix bug reports. Observations driven from this analysis were an inspiration to develop a model that can judge the fixability of NR bugs. Thusa framework, NRFixer, which predicts the probability of NR bug fixation, is proposed. NRFixer wasevaluated with two dimensions. The first dimension considers meta-fields of bug reports (model-1) and the other dimension additionally incorporates the sentiments (model-2) of developers forprediction. Both models were compared using various machine learning classifiers (Zero-R, naiveBayes, J48, random tree and random forest). The bug reports of Firefox and Eclipse projects were used to test NRFixer. In Firefox and Eclipse projects, J48 and Naive Bayes classifiers achieve the best prediction accuracy, respectively. It was observed that the inclusion of sentiments inthe prediction model shows a rise in the prediction accuracy ranging from 2 to 5% for various classifiers. (English)
Description in another language: Zasób o zwiększonej dostępności dla ON (osób z niepełnosprawnościami). (Polish)
Keywords "adaptacja"@pl, "informatyka"@pl
Classification Resource type: article, chapter
Scientific discipline: dziedzina nauk technicznych / informatyka (2011)
Destination group: general public, students, scientists
Harmful content: No
Characteristics Title of source document: e-Informatica: Software Engineering Journal
Numbering: Vol. 11, issue 1
Place of publication: Wrocław
Publisher: Oficyna Wydawnicza Politechniki Wrocławskiej
Time of publication: 2017
From page: 109
To page: 120
ISSN: 1897-7979
Resource language: English
Identifiers: DOI: 10.5277/e-Inf170105
External links
License ID-NC-ND
Technical information Submitter: Magdalena Kruczek
Availability date: 29-08-2019
Collections Kolekcja Politechniki Wrocławskiej, Kolekcja e-Dostępność

Citation

Copied

Anjali Goyal, Neetu Sardana. NRFixer: sentiment based model for predictingthe fixability of non-reproducible bugs. [article, chapter] Available in Atlas of Open Science Resources, . License: ID-NC-ND, https://azon.e-science.pl/licencje/ID-NC-ND_PWr.pdf. Date of access: DD.MM.RRRR.

Similar resources

An empirical evaluation of refactoring

Dirk Wilking, Umar Khan, Stefan Kowalewski, article, chapter, Wrocław University of Science and Technology, dziedzina nauk technicznych / informatyka (2011)

From principles to details: integrated framework for architecture modelling of large scale software systems

Jaroslav Žáček, František Huňka, article, chapter, Wrocław University of Science and Technology, dziedzina nauk technicznych / informatyka (2011)

Sztuczna inteligencja w świecie rzeczywistym

Sylwia Majchrowska, video, Wrocław University of Science and Technology, dziedzina nauk technicznych / informatyka (2011)

Media w sieci

Włodzimierz Gogołek, article, chapter, Wrocław University of Science and Technology, Dziedzina nauk inżynieryjno-technicznych / informatyka techniczna i telekomunikacja (2018)

Time domain measurement representation in computer system diagnostics and performance analysis

Stanisław Wideł, Jarosław Flak, Piotr Gaj, article, chapter, Wrocław University of Science and Technology, dziedzina nauk technicznych / informatyka (2011)

Contents [e-Informatica Software Engineering Journal, Vol. 3, 2009, Issue 1]

Zbigniew Huzar, Lech Madeyski, article, chapter, Wrocław University of Science and Technology, dziedzina nauk technicznych / informatyka (2011)

See more